

Type FT, KT and LT

- Standard KTR-SI safety clutch up to 8200 Nm
- Available ready for assembly with the torque set
- For a direct connection of customer components
- Available as a ratchet, synchronous and fail-safe design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9.
- Surface protection by phosphating

				Technic	cal data				
				Torque	es [Nm]				
Size		Disk spring lay	ers design DK			Disk spring layers o	lesign SR and SGR	1	Weight with max. bore [kg]
	T1	T2	T3	T4	T1	T2	T3	T4	Dore [kg]
0	2,5-5	5-20	-	20-40	5-10	10-40	-	-	0,41
1	6-12	12-25	25-55	55-100	12-25	25-50	50-100	-	1,30
2	12-25	25-50	50-120	120-200	25-50	50-100	100-200	-	2,27
3	25-50	50-100	100-250	200-450	50-100	100-200	200-450	-	3,88
4	50-100	100-200	200-500	500-1000	100-200	200-400	400-800	800-2000	8,34
5	85-250	230-600	300-1000	600-2000	170-450	350-900	600-1800	1200-3400	13,51
6	180-480	360-960	720-1950	1600-3300	300-750	600-1500	1200-3000	2900-5800	21
7	250-520	500-1050	1000-2100	2000-3600	550-1100	1100-2200	2200-4400	3000-8200	37

										imen	sions	[mm]										
C:	Bore	d d																		H=	Hub	
Size	pilot b.	max.	d,	D ₂	D _A	d ₂	d ₃	I,	l ₂	l ₃	l ₄	l ₅	l ₂	l _s	L	L,	L ₂	z	DK	SR	SGR	FR
0	7	20	41,0	48	55	38	28	4,0	6,5	3,0	7,5	9	27,5	8	38,5	51,0	66,0	6xM5	1,4	1,2	0,6	1,6
1	10	25	60,0	70	82	50	38	4,0	8,0	6,0	11,5	9	33,0	10	52,0	70,0	85,0	6xM5	2,3	1,8	0,8	2,3
2	14	35	78,0	89	100	60	52	5,0	10,0	5,0	12,0	9	39,0	12	61,0	78,0	100,0	6xM6	2,4	2,0	1,1	3,0
3	18	45	90,5	105	120	80	65	5,0	12,0	8,5	21,0	10	47,0	12	78,0	96,0	125,0	6xM8	2,7	2,2	1,2	3,5
4	24	55	105,0	125	146	100	78	6,5	15,0	11,0	27,0	9	52,5	16	100,0	124,5	152,5	6xM10 ¹⁾	3,7	2,5	1,2	3,8
5	30	65	120,5	155	176	120	90	6,5	17,0	12,0	33,0	9	57,5	18	113,5	140,0	171,0	6xM12 ¹⁾	4,6	3,0	1,6	4,5
6 ²⁾	40	80	136,0	160	200	130	108	7,0	20,0	14,0	39,0	9	64,0	20	119,0	150,0	183,0	6xM12 ¹⁾	5,0	3,5	2,5	-
7 2)	50	100	168,0	200	240	160	135	8,0	25,0	15,0	46,0	9	72,0	25	141,0	175,0	213,0	6xM161)	5,5	4,0	2,7	-

Design T4, SR and SRG: tightening torques acc. to 12.9 Size 6: dimension $t=15\ \text{mm}$, size 7: dimension $t=21\ \text{mm}$

Ordering	KTR-SI	2	DK	FT	T2	Ø20	40 Nm
example:	Туре	Size	Туре	Туре	Disk springs	Bore	Torque set

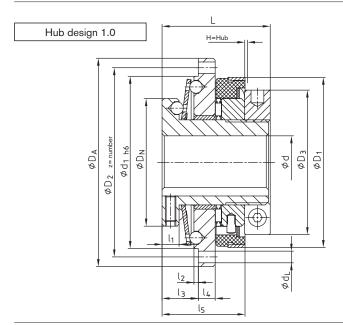
KTR-SI Overload system Miscellaneous types

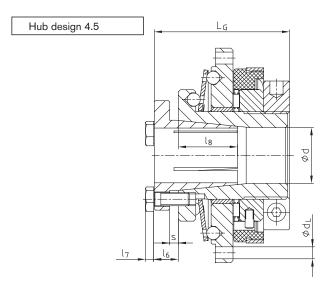
Idle rotation coupling (load-separating)

- Idle-rotation safety clutch for a torque up to 1800 Nm
- Max. speed up to 5000 rpm (see table)
- Driving and driven side are permanently separated
- Manual re-engagement
- Optional overload recognition by limit switch or sensor
- Combination with ROTEX® coupling as shaft-to-shaft connection
- Easy assembly and torque setting

With torsionally flexible ROTEX®

- KTR-SI safety clutch as a shaft-to-shaft connection
- Axial plug-in
- Able to compensate for misalignment
- Available as a ratchet, synchronous and fail-safe design
- Torque setting possible while in place
- Various kinds of elastomer hardness available
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9.


Backlash-free overload system



Standard SYNTEX® flange coupling

- Standard SYNTEX® overload system up to 400 Nm
- Flange design
- Easy mounting of customers' components
- Available both as a ratchet and synchronous design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9.
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)

								Te	chnic	al da	ta											
		Torque	s [Nm]										Dime	ensions	[mm]							
Size	Ratchet of	design DK	Synchrono	ous design K	Max. speed [rpm]	Bore	d															
	DK ₁	DK ₂	SK ₁	SK ₂	[.[pilot b.	max	D _A	D_2	d ₁	D_N	D₃	D ₁	d _L	L	I ₁	l ₂	l ₃	l ₄	l ₅	z	H=Hub
20	6-20	15-30	10-20	20-65	1500	-	20	80	71	65	48	54	61,5	4,5	45	8	2	16	6	35	8	2
25	20-60	45-90	25-65	40-100	1500	-	25	98	89	81	60	68	80	5,5	50	8	2	17	8	39	8	2
35	25-80	75-150	30-100	70-180	1000	-	35	120	110	102	75	78	91	5,5	60	10	2	21	10	42	12	2
50	60-180	175-300	80-280	160-400	1000	-	50	162	152	142	105	108	121	6,6	70	12	2	25	13	56	12	2

			Techni	cal data - Hub	design 4.5			
Size				Dimensions [mm]				Tightening torque
Size	d _{max.}	I ₆	I ₇	I ₈	L _G	s	Clamping screws	T _A [Nm]
20	20	9	3,5	23	54	3	4 x M5	8,5
25	25	11	4,0	28	61	4	4 x M6	14
35	35	10	4,0	31	70	4	4 x M6	14
50	50	12	4,0	37	82	6	4 x M6	14

				Bor	es (fitt	ting to	lerand	ce H7	/h6) a	nd the	e corre	espon	ding f	riction	torqu	ies TF	? [Nm]					
Size	Ø12	Ø14	Ø15	Ø16	Ø17	Ø18	Ø19	Ø20	Ø22	Ø23	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50
20	45	62	71	81	92	103	115	127														
25		72	83	95	107	120	133	148	179	196	213	231										
35									127	139	152	165	207	237	270	323						
50																238	281	311	343	394	448	486

Oud suisses						
Ordering	SYNTEX®	25	DK1	Ø20	1.0	45 Nm
example:						
	Туре	Size	Туре	Bore	Hub design	Torque set

Backlash-free overload system

Standard SYNTEX® with integrated sprocket

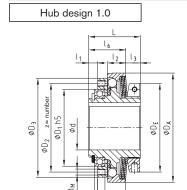
- Standard SYNTEX® with integrated sprocket
- Available ready for assembly with the torque set
- Reduction of number of components by integration of components
- Available both as a ratchet and synchronous design
- Torque setting possible while in place
- Fertigbohrung nach ISO-Passung H7, Passfedernute nach DIN 6885 Bl. 1 - JS9
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)

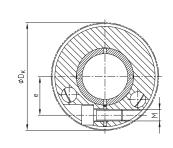
Standard SYNTEX® with belt drive

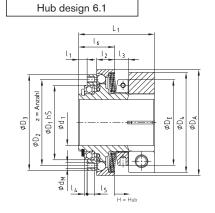
- Standard SYNTEX® with integrated belt drive
- Available ready for assembly with the torque set
- Reduction of number of components by integration of components
- Available both as a ratchet and synchronous design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9.
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)

SYNTEX® with shaft coupling ROTEX® GS

- Backflash-free, torsionally stiff safety clutch
- Axial plug-in
- Low mass moments of inertia by using aluminium components
- Available both as a ratchet and synchronous design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9.
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)


SYNTEX®-NC Backlash-free overload system




SYNTEX®-NC

- Safety clutch up to 280 Nm
- Backlash-free, torsionally stiff
- Lower mass moment of inertia
- Available as a synchronous and ratchet design
- Easy assembly
- Compact design
- See company catalogue

								Tecl	nnical	data									
Size	Speed	T	orques [Nn	1]							Dim	ensions [mm]						
Size	[rpm]	T ₁	T ₂	T ₃	d _{max.}	D ₁ h ₅	D_2	D ₃	D _A	D _E	z x d _M	L	l ₁	l ₂	l ₃	l ₄	l ₅	l ₆	H-Hub
25	3000	8 - 15	17 - 30	35 - 65	221)	42	48	56	61	50	8xM4	33	5,5	11,5	9,1	2	5	23,9	1,2
32	3000	20 - 35	40 - 70	80 - 145	301)	52	60	67	74	60	8xM4	35	6	12,5	9,9	2	5	25,1	1,5
42	2500	30 - 70	55 - 140	105 - 280	381)	65	75	83	90	72	8xM5	43	7	16	11,2	2	6	31,8	1,5

					Dime	nsions witl	h clamping	ring type	6.1	
Size	Bore	e d ₁						Dimensions [mr	n]	
Size	Pilot bore	max.	D_4	D _K	L ₁	е	М	T _A [Nm]	Weight ²⁾ [kg]	Mass moment of inertiat2) J _{Ges} [kgm ²]
25	9,5	25	55	-	45	21	M6	14	0,282	0,00014
32	13,5	32	70	-	53	27	M8	34	0,471	0,00035
42	18,5	42	86	91,2	63	33	M10	67	0,815	0,00095

				Transn	nittable	friction	n torq	ues T _R	[Nm]	of clam	nping r	ing 6.1	(witho	ut fea	her ke	yway)				
Size	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø36	Ø38	Ø40	Ø42
25	34	41	48	63	71	79	55	61	67	79	92	98								
32					87	95	118	130	143	169	132	143	174	197	220					
42									170	203	238	257	314	354	293	344	361	397	433	470

²⁾ with max. bore

Ordering	SYNTEX®-NC	32	SK	T3	Ø25	6.1	120
example:	Typo	Size	Туре	Disk springs	Bore	Hub design	Torque set
	Type	Jize	[DK/SK]	Diak shiiligs	Dole	i iub design	Torque set

 $^{^{\}mathrm{1)}}$ max. bore, feather keyway acc. to DIN 6885 sheet 3

SYNTEX®-NC Backlash-free overload system

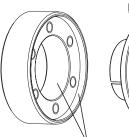
SYNTEX®-NC with ROTEX® GS

- Safety clutch as a shaft-to-shaft connection
- Combination with the backlash-free Rotex® GS
- Torsionally flexible, able to compensate for misalignment
- Axial plug-in
- See company catalogue

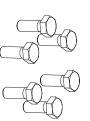
SYNTEX®-NC with RADEX®-NC

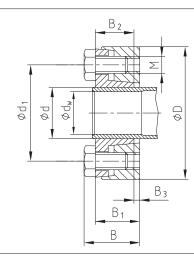
- Combination with the torsionally stiff RADEX®-NC coupling
- Backlash-free torque transmission
- Able to compensate for misalignment
- Compact dimensions
- Finish bores with feather keyway or available as a clamping design

CLAMPEX® Shaft-hub-connection



KTR 620


- Applications on hollow shafts, slip-on gears, couplings, mechanical shrink connections
- Suitable for high torque loads
- Easy assembly by visual mounting groove
- Corrosion-resistant outer ring (phosphated)
- Good centering and concentricity characteristics
- KTR 620 FK flange coupling (Please order dimension sheet M494133.)
- KTR 625 for higher torques (Please order dimension sheet M462972.)
- Mounting instructions at www.ktr.com



areased

Assembly

Clean and degrease the contact surfaces of shaft and hub (internal hollow shaft). Slightly unscrew the clamping screws and put the clamping set externally onto the hub/hollow shaft. Before tightening the clamping screws please assemble the shaft. Evenly tighten the diametrically opposite clamping screws until the front surfaces of the outer and inner rings are flush. The max. screw tightening torque indicated must not be exceeded. The values for T and Fax indicated in the table relate to an assembly with greased external clamping set. The external clamping sets are delivered in greased condition. When assembling grease-free external clamping sets the values shown in the table and the values calculated are different. In case of questions, please feel free to contact us.

Note: Contact surfaces of shaft and hub bore (internal hollow shaft) must not be greased or oiled.

Disassembly

All clamping screws must be unscrewed evenly and one after another. Do not completely unscrew the clamping screws off the thread. Loosen the external taper ring in the inner ring with the forcing thread.

Tolerances, surfaces

One accurate turning process is sufficient:

RZ ≤ 16µm

Maximum permissible tolerances:

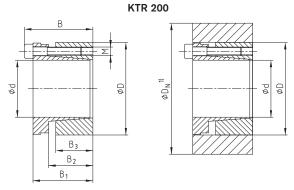
d = f7 for the hub (external hollow shaft)

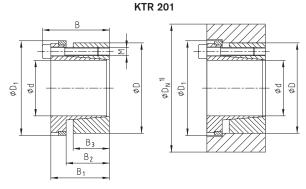
 $d_{w} = h6/H7$

 $d_w > Ø 160 - g6/H7$

Axial displacement

During the tightening of the screws there is no axial displacement of the hub towards the shaft.


Ordering example:	KTR 620	20	47
example.	Туре	Size of inside diameter d	Size of outside diameter D


KTR 200 and KTR 201 (self-centering)

- Clamping element for universal use
- Wide range of applications
- Low-cost solution with average to high torques
- Mounting instructions at www.ktr.com

Considerably higher transmittable torque than KTR 201, slight axial displacement of the hub

No axial displacement of the hub, but lower transmittable torque than with KTR 200

Assembly

Clean the contact surfaces of the clamping set as well as the shaft and the hub and afterwards apply thin-fluid oil. Insert the clamping set into the hub fit and push it onto the shaft. Tighten the clamping screws crosswise, evenly and by degrees to the tightening torque T_A mentioned by means of the torque wrench. Check the tightening torque of all clamping screws in the order of arrangement. The figures T_A and T_A mentioned in the table were calculated for an assembly with oil.

Please note: Oils and greases containing molybdenum disulphide or high-pressure additives, additives of teflon and silicone as well as sliding grease paste reducing the coefficient of friction considerably must not be used. For assembly of the clamping set tapers without oil, the figures mentioned in the table deviate from the calculated figures.

Disassembly

Unscrew the clamping screws. Screw the screws into the pull-off thread, tighten them crosswise by degrees and evenly until the rear taper ring is released. For repeated application oil the screws and threads.

Tolerances, surfaces

One accurate turning process is sufficient:

RZ ≤ 16μm

Maximum permissible tolerances:

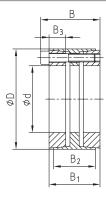
h8 for the shaft - H8 for the hub

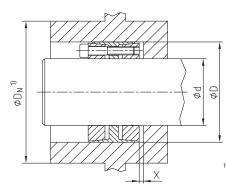
Centering

The clamping elements KTR 200 and KTR 201 are self-centering. The concentricity of the clamping set between shaft and hub is between 0,02 and 0,08 mm.

Ordering	KTR 200	40	K 65
example:	Туре	Size of inside diameter d	Size of outside diameter D

¹⁾ Dimension DN: For details of calculation see comp. catalogue.


CLAMPEX® Shaft-hub-connection



KTR 400 (self-centering)

- Clamping set suitable for high loads
- Specifically suitable for vibratory torques
- Typical applications: flywheels, belt drums
- Torque factor
 - 1 off 1 x T
 - 2 off 1,9 x T
 - 3 off 2,7 x T
 - 4 off 3,6 x T
- KTR 402 for shaft Ø 320 mm to Ø 560 mm and high torques, please order dimension sheet M483041.
- Mounting instructions at www.ktr.com

Formula to calculate space x left for disassembly:

$$x = (B1-B2) / 2$$

Dimension D_N: For details of calculation see comp. catalogue.

Assembly

Clean the contact surfaces of the clamping set as well as the shaft and the hub and afterwards apply thin-fluid oil. Insert the clamping set into the hub fit and push it onto the shaft. Tighten the clamping screws evenly and crosswise. Here please increase the tightening torque step by step. This must be repeated until reaching the indicated tightening torque with all clamping screws.

Please note: Oils and greases containing molybdenum disulphide or high-pressure additives, additives of teflon and silicone as well as sliding grease paste reducing the coefficient of friction considerably must not be used. For assembly of the clamping set tapers without oil, the figures mentioned in the table deviate from the calculated figures.

Disassembly

Unscrew all clamping screws and screw them into the pull-off threads of the front taper ring. Tighten the screws crosswise by degrees and evenly to half the tightening torque T_A. Afterwards repeat this process to the full tightening torque. As soon as the front taper ring is released, screw the clamping screws into the pull-off threads of the spacer ring in order to release the rear taper ring.

Please note: If the clamping element KTR 400 is reused it has to be made sure that the pull-off threads of the front taper ring and the spacer are in their original position. Here the slots of the front and the back pressure ring and those of the external ring must be flush.

Tolerances, surfaces

One accurate turning process is sufficient:

RZ ≤ 16μm

Maximum permissible tolerances:

h8 for the shaft - H8 for the hub

Axial displacement

During the assembly a slight axial displacement of the hub towards the shaft may arise.

Centering

The clamping element KTR 400 is self-centering. The concentricity of the clamping set between shaft and hub is between 0,02 and 0,08 mm.

·····

g s

Example of installation

Drive of conveyor belt drum

The following conditions should be adhered to as limiting values for CLAMPEX® clamping sets with load by bending: Direction angles x on the contact position shaft-clamping set \leq 6' or maximum shaft bending fm in the bearing area:

 $fm \le I (1/2000 - 1/3000).$

Ordering	1/75		
example:	KTR 400	100	x 145
example.	_	0: (: :	0. (
	Туре	Size of inside diameter d	Size of outside diameter D

KTR 203 and KTR 206 (self-centering)

- Clamping set for universal applications
- Short mounting dimensions
- Operation as with KTR 200/201
- Mounting instructions at www.ktr.com

KTR 250 (self-centering)

- Clamping set specifically suitable for hubs with a small wall thickness
- Reduction of costs by saving material
- Short assembly times
- Small radial mounting dimensions
- Clamping sets "stainless steel" on request (Please order dimension sheet M367697.)
- Mounting instructions at www.ktr.com

KTR 225 for disk and flange shape drive components (self-centering)

- For the same diameter of the external ring various bore diameters are available
- Only one bore for each size necessary for the hub
- Reduction of components and costs
- Short assembly times
- Mounting instructions at www.ktr.com

KTR 130 and KTR 131 (self-centering)

- Corrosion-protected surface
- Assembly and disassembly by means of central clamping nut
- Self-centering
- Shaft diameters from 5 mm to 50 mm
- Tolerance h8/H8 for shaft and hub
- KTR 131: Hexagon locking nuts for clamping on easily torsionable shafts
- Mounting instructions at www.ktr.com

DATAFLEX®

Torque measuring shaft

DATAFLEX® 16 and 32 - High precision with each revolution

With the new series of DATAFLEX® 32 KTR extend their range of precision measuring shafts for average torques. Along with the well-established size DATAFLEX® 16 measuring ranges from 10 to 500 Nm are now covered.

With the new series DATAFLEX® 16 or DATAFLEX® 32 the torque is measured using the approved technology of wire strain gauges DMS while processing without contact at a resolution of 24 bit. Thus, the torque measurement achieves an accuracy of 0,1% of the final value.

Supplementary to torque measuring the measuring shafts size 16 and 32 have a speed encoder providing two offset signals with a resolution of 360 or 720 pulses per revolution. The speed display in practice is not an optional extra feature, but already included in the serial scope.

DATAFLEX® 22, 42, 85, 140 - Patented technology at top prices

The DATAFLEX® torque measuring shafts sizes 22 to 140 measure the torques without contact and free from wear. Their secret is a patented measuring method acquiring the twisting of the torsion shaft by measuring the quantity of light. For that purpose the light is directed through two disks the transparency of which is amended proportionally to the torque. The overall electronics are situated in a stationary housing to make sure that no signals have to be transmitted by the rotating shaft and the torque is available accurately with a high band width of 16 kHz. This can measure and analize highly dynamic processes accurately.

The analog output values are available both as a voltage signal from 0-10 V and as a current signal from 4-20 mA. In addition a speed encoder is integrated providing a signal at a resolution of 60 impulses per revolution.

Connection housing DF2 - All Inclusive

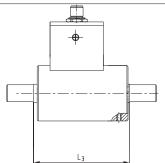
The connection housing DF2 can easily be combined with all DATAFLEX® torque measuring shafts disposing of a retainer for top hat rail assembly as well as terminal screws for an easy connection of external devices.

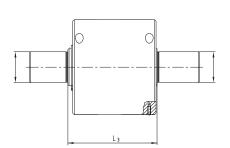
The following features save the purchase of expensive measuring amplifiers and converters:

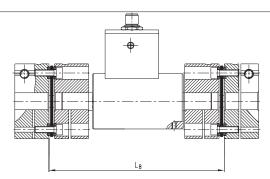
- The torque output can be filtered over 5 steps so that short torque peaks in the display can be reduced.
- The pulse signal of the speed output can be configured both for 5V (TTL) and 24V (HTL). This makes the speed signal compatible for data logging boards and SPS controls.
- In parallel with the pulse signal an integrated frequency voltage converter supplies a
 DC voltage from 0 10 V proportionally to the speed, the scaling of which can be
 changed individually. This makes an expensive counter superfluous so that the signal
 can either be processed as a voltage or can be displayed.
- A directional signal indicates the rotational direction of the drive (with DATAFLEX® 16 and 32).

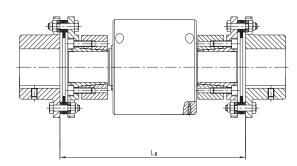
Couplings adjusted to every application

With all DATAFLEX® sizes we recommend the servo lamina coupling RADEX®-NC and the steel lamina coupling RADEX®-N, a compact solution which can be quickly integrated having a high stiffness. In general it is also possible to use backlash-free plug-in couplings such as ROTEX® GS or to integrate an overload coupling.


DATAFLEX® Torque measuring shaft


DATAFLEX® Torque measuring shafts


- Measuring ranges from 10 bis 50.000 Nm
- Inaccuracy: 0,1% and 0,5% of the terminal value
- Low-cost overall solution
- Integrated speed measurement
- Additional direct voltage output for speed
- Reliable measurement values in
 - machine monitoring
 - process control
 - test bench technology

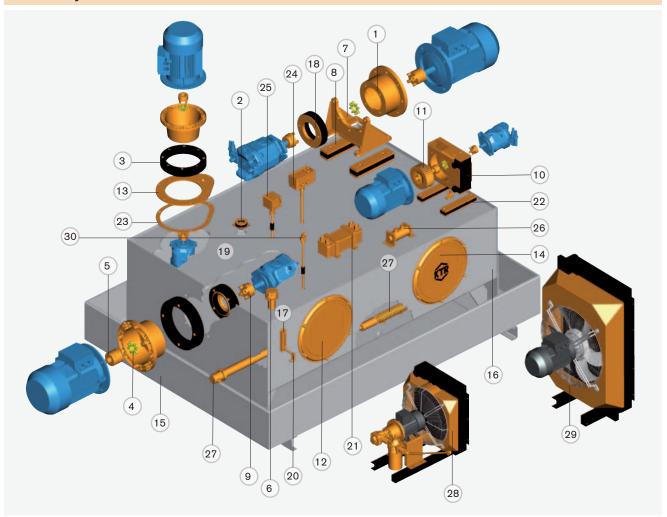

DATAFLEX® 16

DATAFLEX® 42

Combination of DATAFLEX® 16 with RADEX®-NC

Combination of DATAFLEX® 42 with RADEX®-N

General features										
	Torque Speed: Dimensions									
DATAFLEX® Typ	Measurement	Measurement	Band width	Output of torque	Resolution	Square wave	DC-Signal	Coupling ³⁾	Distance dimension	Distance dimension
	rangeh T _{KN} [Nm]	accuracy 1,2) [%]	[kHz]	Output of torque	(pulses/rev.)	signal [Vss]	010V	Coupling	Measuring shaft L ₃ [mm]	Combination L ₈ [mm]
				Ser	ies with strain ga	uges				
16/10	±10	0,1	2	-10V +10V	2x360	5/24	ja	RADEX®-NC 20		146
16/30	±30	0,1	2	-10V +10V	2x360	5/24	ja	RADEX®-NC 25	90	164
16/50	±50	0,1	2	-10V +10V	2x360	5/24	ja	RADEX®-NC 25		164
32/100	±100	0,1	2	-10V +10V	2x720	5/24	ja	RADEX®-N 42		205
32/300	±300	0,1	2	-10V +10V	2x720	5/24	ja	RADEX®-N 60	95	227
32/500	±500	0,1	2	-10V +10V	2x720	5/24	ja	RADEX®-N 60		227
				Serie	s with KTR light	sensor				
22/20	±20	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-NC 25		164
22/50	±50	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-NC 35	90	174
22/100	±100	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-NC 35		174
42/200	±200	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-N 60		254
42/500	±500	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-N 60	122	270
42/1000	±1000	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX® N 80		270
85/2000	±2000	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-N 105		384
85/5000	±5000	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-N 115	164	410
85/10000	±10000	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja	RADEX®-N 135		488
140/20000	±20000	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja		200	
140/50000	±50000	±0,5	16	0-10 V, 4-20 mA	1x60	5/24	ja		206	


 $^{^{1)}}$ referring to nominal value $T_{\rm KN}$

²⁾ errors in linearity incl. hysteresis 3) standard coupling recommended

Hydraulic Components

Summary

- Bellhousing type PK/PL
- Elastic flange
- 3 Damping ring design DT
- 4 ROTEX® spider
- 5 ROTEX® coupling hub, motor side
- 6 Filler breather (with ventilation filter)
- 7 Foot flange type PTFS (VDMA 24 561 part 1)
- 8 Damping rod design DSFS for foot flange type PTFS
- 9 ROTEX® coupling hub, pump side
- (10) Bellhousing type PIK with integrated oil cooler
- 11) Fan for PIK
- 12 Standard cleaning cover
- 13 Additional flange type ZO
- (14) Cleaning cover with logo according to customer
- specification
- Oil sump pan

- (16) Steel tanks type BSK/BNK/BEK
- (17) Oil-level indicator type KO
- (18) Damping ring type D
- (19) Machining of tank according to customer specification
- 20 Temperature switch type TS
- (21) PHE plate heat exchanger
- 22 Damping rod design DSK for PIK
- (23) Gasket type DZ for additional flange type ZO
- 24 Industrial controller IR
- 25 IRDN digital industrial control with level switch
- 26 Horizontally mounted cooler TAK
- 27 Tank heaters
- 28 OPC Cooling-pump-unit with hydraulic pump filter
- 29 OAC-Oil/air coller
- (30) Level-temperature-switch type NVT

The customer has to protect rotating parts from accidental contact (Safety of Machines DIN EN 292 part 2).

The fastening screws should be protected from unscrewing by the customer (e. g. by anaerobic bonding agents like Loctite®).

Hydraulic Components Bellhousings

Bellhousings made of aluminium

- Connecting components between IEC motor and hydraulic pump
- For almost every hydraulic pump from stock or in short term
- Both flange sides are finish machined
- Motor and pump shaft centered
- KTR bellhousings are made of aluminium, type made of steel on request
- In many cases KTR bellhousings can be piled up
- Designed for high loads
- For the bellhousing selection you require please see our selection programme at www.ktr.com
- Operating temperature: -40 °C to 100 °C
- Please note our mounting instructions

Bellhousings made of nylon

- Motor and pump shaft centered; designed for high loads
- Both flange sides are finish machined
- Type KPT: Bellhousing made of special nylon material
 - Accurate to size with higher temperatures and moisture
 - Stiffness is similar to aluminium bellhousings
 - Excellent damping properties
 - Flange side for pump adapter from aluminium
- Low-cost alternative to bellhousings with damping ring
- Operating temperature: -10 °C to +60 °C
- For almost every hydraulic pump available from stock or in short term
- For the bellhousing selection you require please see our selection programme at www.ktr.com

Bellhousings made of cast iron

- Bellhousings made of cast iron
- PSG types particularly for servo motor drives with square flange
- Bellhousing suitable for high loads
- Suitable for mining, offshore applications and servo drives
- Resistant to almost every hydraulic oil and salt water
- Both flange sides are finish machined
- The bellhousings are primed, machined surfaces are preserved
- Good damping properties due to the relatively big mass
- For almost every hydraulic pump available from stock or in short term
- Please note our mounting instructions

Damping rings in combination with bellhousings

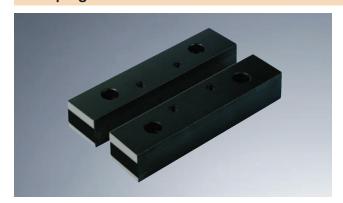
- The damping ring forms a centering unit with the bellhousing
- Combination also available for multiple pumps
- For the mounting of the damping ring special bellhousings are available to realize a short design
- For the bellhousing selection you require please see our selection programme at www.ktr.com
- Please note our mounting instructions

Hydraulic Components Damping elements

Damping elements

- For structure-borne noise separation of the pressure and suction lines to the tank
- Suitable for bulkhead pipe fitting SV6 SV42
- Sealing surface is moulded on
- Made of oil-resistant buna N
- Larger types on request

Damping elements


- Vulcanized and failsafe (up to D 330, patent pending)
- High weight loading permissible (e. g. multiple pumps)
- Excellent damping properties
- Excellent resistance to hydraulic oils
- Sealing lips are moulded on (up to size 330) no additional sealing required
- For the bellhousing selection you require please see our selection programme at www.ktr.com

Damping elements

- DTV for vertical assembly only!
- To reduce noise between drive unit and tank by means of rubber-elastic separation
- Type DT for horizontal and vertical assembly
- Type DT is protected against separation (failsafe) by means of a special design (registered design of the interconnected parts)
- Pressure-loaded elastomer due to the interconnected part
- High permissible radial, angular and axial load
- Sealing lips are moulded on no additional sealings required

Damping elements

- Damping rods reduce the noise level and dampen vibrations
- Finish machined for motors IMB 35 (DSM), PTFL foot flanges (DSFL) or PTFS foot flanges (DSFS) and PIK oil coolers (DSK)
- Available from stock
- Special lengths or types available on request
- Also suitable for Nema motors
- Damping rods are made of natural rubber (NR)
- All damping rods are adapted to the weight load that is produced
- Thrust loading (V1) not permissible

Hydraulic Components Coolers

Oil/air cooler — Type OAC

- High-performance cooler core for a maximum static operating pressure of 26 bar in aluminium (Al)
- Suitable for hydraulic oil, gear lubricant oil, lubricating oil, motor oil and water-glycine
- Fan drive in 12 V, 24 V, 230 V/400 V and hydraulic drive
- Easy maintenance and good options for cleaning
- Low sound pressure level
- CE certification
- Marine design for use in a corrosive atmosphere
- Alternative type with OAC 200 to 1000 available:
 - (Ex) Approved according to EC standard 94/9/EC

Oil/air cooler — Type OPC (cooling-pump-unit)

- High-performance cooler for a maximum static operating pressure of 26 bar
- Driving motor 230 V/400 V IP55
- Suitable for hydraulic oil, gear lubricant oil and lubricating oil
- Easy maintenance and good options for cleaning
- Available with filter
- Low sound pressure level
- CE certification
- Short delivery period
- Alternative type with OPC 200 to 600 available:
 - (Ex) Approved according to EC standard 94/9/EC

Oil/air cooler - Type PIK

- Suitable to cool the entire oil volume (return pass)
- Constant air flow rate of the heat exchanger due to a low pressure principle (patent pending)
- Optimum utilization of the high-performance heat exchanger
- Optimum matching of housing and fan wheel
- Direct suction of cold ambient air by the heat exchanger
- Heat exchanger can easily be cleaned externally (without any disassembly)
- For the bellhousing selection you require please see our selection programme at www.ktr.com

Oil/water cooler — Type TAK/T

- Oil cooler as tube bundle heat exchanger
- Type TAK/T
- The cooler series 20 have been designed specifically for hydraulic systems
- Highly efficient up to 340 kW
- Available in marine version (seawater)
- Easy cleaning by dismountable tube stacks
- Please note our mounting instructions (www.ktr.com)

Hydraulic Components Tank heaters

Tank heaters - Type EHP

- Inserted heating cartridges to preheat hydraulic oil
- Temperature control by internal or external setting single-pole control 0 - 85 °C, 16 A
- Replaceable ceramic heating cartridges (assembly without oil drain)
- Steel cap from bright zinc coating/cover from stainless steel
- Suitable for horizontal assembly below oil level
- Material: steel (other materials on request)
- Surface load 1.5 W/cm² for hydraulic oils
- Protection class IP 65 (excluding design EHP (TA) IP 54)
- Further designs available on request
- The connector pin assignment is enclosed to the unit

Tank heaters - Type EH and Type TEHM

- Inserted tubular heating element to preheat hydraulic oil
- Suitable for horizontal assembly below oil level
- With or without temperature control for internal or external setting with single-pole control 0 - 85 °C, 16 Ampere
- Surface load 1.5 W/cm² for hydraulic oils
- Steel cap from bright zinc coating/cover from stainless steel
- Material: stainless steel (1.4541)/brassy nipple (other material on request)
- Protection class IP 65 (excluding design EH (TA) IP 54)
- Further designs available on request
- The connector pin assignment is enclosed to the unit
- Please note our mounting instructions (www.ktr.com)

Inserted tank heaters with magnetic clamp type TEHM

- To preheat hydraulic oil
- Inserted tank heater to be fixed either horizontally to the tank ground or vertically to the tank wall by means of magnetic clamps
- Ideal solution to retrofit existing machines and plants
- Assembly without oil drain
- Internal control with preset cut-in or cut-off temperature (standard 20 °C, switching precision 3 °C)
- If requested, it is possible for the manufacturer to set switching temperatures to the details specified by the customer
- Other media/operating fluids available on request
- The connector pin assignment is enclosed to the unit
- Please note our mounting instructions (www.ktr.com)

Hydraulic Components Foot flanges, bellhousings, accessories

Foot flanges

- The designing of PTFL by means of the finite element method permits very high loading capacity with minimum weight
- PTFL as a compact, space-saving design in combination with KTR bellhousing and damping ring
- Storage of only one electric motor type both for horizontal and vertical construction
- PTFS preferably for mobile applications
- All types available from stock other sizes on request
- Please note our mounting instructions

Accessories for bellhousings

- Assembly and disassembly of the fully mounted drive unit outside the tank is possible
- Facilitates cleaning and maintenance
- Penstock connections via mounting flange
- Material aluminium
- Suitable for bellhousings up to size P 350
- Gaskets type DP and DZ made of buna N (NBR) available from stock
- Gaskets type DP are used between bellhousing and tank cover and also between bellhousing and ZO mounting flange
- Gaskets type DZ are used between ZO mounting flange and tank cover

Hydraulic Components Accessories for oil tanks

Accessories for oil tanks

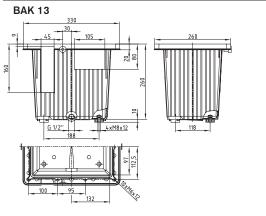
- Electrical level and temperature control
- Suitable for mineral oils
- Available either with 2 level contacts or 1 level contacts and 1 temperature probe
- Electrical switch: decreasing level "break contact" increasing temperature "break contact"
- Further lengths on request
- Type in accordance with ATEX on request

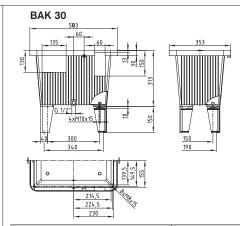
Temperature control and monitoring

- Up to 4 programmable switching terminals to be selected either as level or temperature signal
- Combined continuous control of level and temperature
- Perfectly visible LED display, swinging by 270°
- Easy to program
- 2 x M12 plug bases 4 poles
- Programmable analogue output as 4-20 mA, 0-5V, 0-10V or 2-10V
- PNP switching terminal to be programmed as frequency terminal
- Min./max. memory, log-book operation
- Available from stock

Temperature control and monitoring

- Control of the operating temperature of the medium
- Value of resistance proportionally changeable to temperature
- Continuous signal change
- Flexible seal on the screwed thread head
- Optionally available with transmitter
- Type in accordance with ATEX on request


Hydraulic Components Tanks

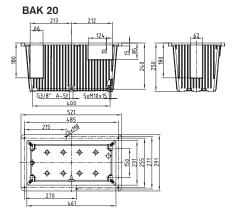

Aluminium tank

- Made of aluminium for depressurized operation (0,5 bar at the maximum)
- With oil collecting groove moulded on periphery for collection of leakage oil (Water Resources Act)
- O-ring seal for all tank sizes, ready to use
- No painting or priming of the tank required
- Good heat loss capacity due to high caloric conductibility and large heat dissipating surfaces
- All tanks are 100 % tight and may be stacked without jamming
- All sizes available from stock
- All tanks including drain plug similar to DIN 908
- Temperature resistant up to + 100 °C

Effective volume [Litres]	Gasket
11,5	O-ring seal RS 13 NBR



Effective volume [Litres]	Gasket
27,0	O-ring seal RS 30 NBR


Aluminium tank

- Made of aluminium for depressurized operation (0,5 bar at the maximum)
- Without oil collecting groove
- O-ring seal or flat seal for all tank sizes, ready to use
- No painting or priming of the tank required
- Good heat loss capacity due to high caloric conductibility and large heat dissipating surfaces
- All tanks are 100 % tight and may be stacked without jamming
- All sizes available from stock
- All tanks including drain plug similar to DIN 908
- Temperature resistant up to + 100 °C

Effective volume [Litres]	Gasket	
9,5	Flat seal FD 20 FD 10	

Effective volume [Litres]	Gasket
18,0	Flat seal FD 20

Hydraulic Components Steel tanks

Series BSK

- Tanks made of high-grade steel
- Tanks sand-blasted, with high-quality internal and external coating resistant to hydraulic oils on a mineral oil basis
- Priming is compatible with other varnish paints
- All tanks are subject to 100 % tightness test
- Subsequent assembly of KTR standard separation sheet metals possible for all tank sizes (assembly of separation sheet metals across cleaning hole)
- Cover machining as per customer's request
- Transport eyes on request of customer

Series BNK type A

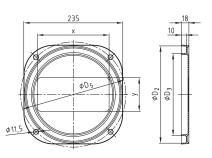
- DIN tanks made of high-grade steel
- Tanks sand-blasted, with high-quality internal and external coating resistant to hydraulic oils on a mineral oil basis
- Priming is compatible with other varnish paints
- All tanks are subject to 100 % tightness test
- Subsequent assembly of KTR standard separation sheet metals possible for all tank sizes (assembly of separation sheet metals across cleaning hole)
- Cover machining as per customer's request
- Transport eyes on request of customer

Series BNK type B

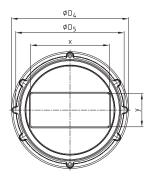
- DIN tanks made of high-grade steel
- Tanks sand-blasted, with high-quality internal and external coating resistant to hydraulic oils on a mineral oil basis
- Priming is compatible with other varnish paints
- All tanks are subject to 100 % tightness test
- Cover machining as per customer's request
- Transport eyes on request of customer

Series BEK

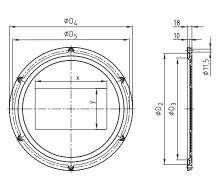
- Tanks made of high-grade steel
- Tanks sand-blasted, with high-quality internal and external coating resistant to hydraulic oils on a mineral oil basis
- Priming is compatible with other varnish paints
- All tanks are subject to 100 % tightness test
- Cover machining as per customer's request



Accessories for oil tanks

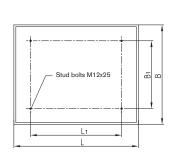


- Cleaning covers V324 and V449 according to DIN 24339
- Material aluminium
- Screw tightening torque for all cleaning cover sizes 10 Nm at the maximum
- Cleaning cover V324-6/HFC, V449-6/HFC and V580-8/HFC are resistant to HFC fluids
- Gaskets type PRD made of buna N (NBR), made of material Viton on request
- Available with logo on request
- Max. permissible pressure = 0,5 bar

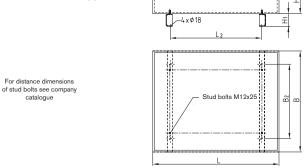

Cleaning cover type V250-4 PRD

Cleaning cover type **DIN 24339**

Cleaning cover type



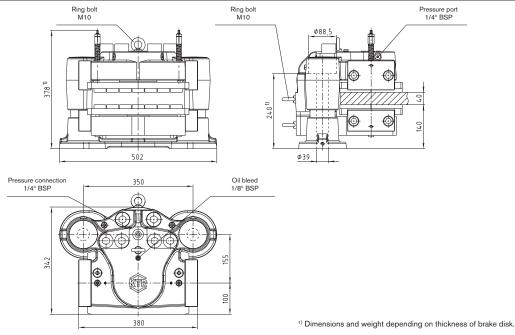
Oil Sump Pans



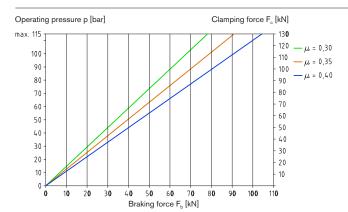
- Oil sump pans made of high-grade steel
- Collection volume corresponds to the full load volume of the tank
- Oil sump pans are sand-blasted, with high-quality internal and external coating resistant to hydraulic oils on a mineral oil basis
- Priming is compatible with other varnish paints
- All oil sump pans are subject to 100 % tightness test
- Oil sump pans meet with the standards of WHG

Oil sump pans without feet


Oil sump pans with feet


KTR-STOP® Hydraulic brakes

KTR-STOP® M-A-F



- Short reaction times due to the small distance between brake pad and brake disk as well as the low oil volume
- Large surface of pad results in a low surface pressure, low wear of pads and low temperature
- Low maintenance effort because of few mobile components only
- Drain ports avoid leakages on the brake pads
- Brake pads made of various materials available
- Brake pads easy to replace
- Suitable for rough ambient conditions
- Easy assembly of brake by means of two screws

KTR-STOP® M-A-F					
Total weight ca. 172 kg ¹) Max. clamping force 130 kN					
Width of brake pad	200 mm	Max. operating pressure	115 bar		
Surface area of each brake pad - organic	57.900 mm ²	Thickness of brake disk	25 mm - 50 mm		
Surface area of each brake pad - powder metal	53.500 mm ²	Pressure port	1/4" BSP		
Max. wear of each brake pad	10 mm	Oil bleed	1/8" BSP		
Nominal coefficient of friction 2)	$\mu = 0.4$	Backlash on axles - towards mounting surface	5 mm		
Total brake piston area - complete brake	113 cm ²	Backlash on axles - away from mounting surface	10 mm		
Volume with 1 mm stroke - complete brake	11,3 cm ³	Min. diameter of brake disk ØD _A	800 mm		
		Operating temperature	-30 °C to +40 °C		

²⁾ The coefficient of friction each depends on the application or material of the brake pad, respectively. Please cconsult with KTR.

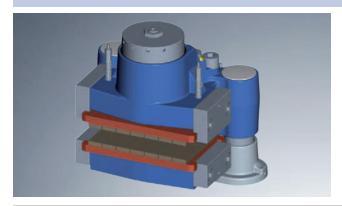
 $\mathsf{M}_{\scriptscriptstyle b} = \mathsf{z} \, \bullet \, \mathsf{F}_{\scriptscriptstyle b} \, \bullet \, \mathsf{D}_{\scriptscriptstyle av} \! / 2$

F_b = Braking force [kN]

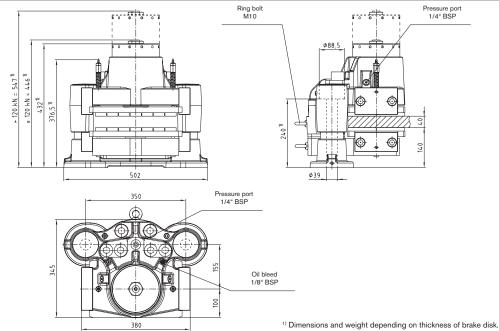
F_c = Clamping force [kN]

 M_b = Braking torque [kNm]

z = Number of brakes


D_{av} = Effective diameter of brake [m]

	Ordering
example:	example:


KTR-STOP®	M .	– A -	- F	Α -	- 40
KTR brake	Size of brake	Active	Floater	Option	Thickness of brake disk

KTR-STOP® M-xxx-F

- Sealed shafts for difficult ambient conditions
- Large surface of pad results in a low surface pressure, low wear of pads and low temperature
- Low wear of pistons due to arrangement of the pistons in guide rings
- High power density
- Brake pads made of various materials available
- Dirt is prevented by strippers in the shaft guidance
- Easy assembly of brake by means of two screws

KTR-STOP® M-xxx-F						
Total weight	200 bar					
Width of brake pad	200 mm	Thickness of brake disk	25 mm - 50 mm			
Surface area of each brake pad - organic	57.900 mm²	Pressure port	1/4" BSP			
Surface area of each brake pad - powder metal	53.500 mm ²	Oil bleed	1/8" BSP			
Max. wear of each brake pad	10 mm	Backlash on axles - towards mounting surface	5 mm			
Nominal coefficient of friction 2)	$\mu = 0.4$	Backlash on axles - away from mounting surface	less than 120 kN = 10 mm			
Total brake piston area - complete brake	137,4 cm ²		more than 120 kN = 5 mm			
Volume with 1 mm stroke - complete brake	13,74 cm ³	Min. diameter of brake disk ØDA	800 mm			
		Operation temperature	-30 °C to +40 °C			

Types of brakes					
Type of brake 3)	Clamping force F _c [kN]	Loss of prestress 4) [%]	Opening pressure [bar]	Weight ¹⁾ [kg]	
KTR-STOP® M-100-F	100	7,0	110	200	
KTR-STOP® M-120-F	120	8,5	130	200	
KTR-STOP® M-140-F	140	4,5	150	212	
KTR-STOP® M-160-F	160	7,0	180	212	
KTR-STOP® M-180-F	180	6.0	190	212	

 ²⁾ The coefficient of friction each depends on the application or material of the brake pad, respectively. Please cconsult with KTR.
 ³⁾ Other types of brakes on request
 ⁴⁾ With 1 mm stroke (0,5 mm wear of pad on each side)

 $F_b = F_c \bullet 2 \bullet \mu$

Braking force [kN]

Number of brakes

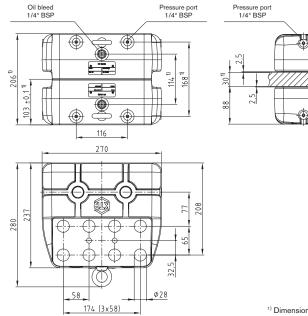
 $M_b = z \bullet F_b \bullet D_{av}/2$

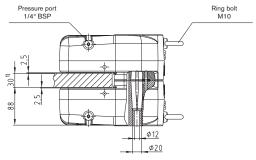
Clamping force [kN]

Effective diameter of brake [m]

Braking torque [kNm]

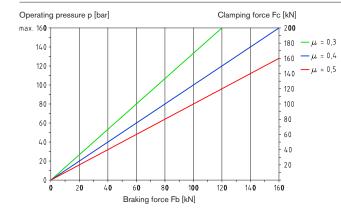
Ordering	
example:	


KTR-STOP®	М -	- 100 -	- F	Α -	- 40
KTR brake	Size of brake	Clamping force	Floater	Option	Thickness of brake disk



KTR-STOP® YAW M

- Short reaction times due to the small distance between brake pad and brake disk as well as the low oil volume
- Large surface of pad results in a low surface pressure, low wear of pads and low temperature
- Low maintenance effort because of few mobile components only
- Drain ports avoid leakages on the brake pads
- Brake pads made of various materials available
- Brake pads easy to replace
- Suitable for rough ambient conditions



1) Dimensions and weight depending on thickness of brake disk.

KTR-STOP® YAW M				
Total weight	ca. 63 kg ¹⁾	Max. clamping force	203 kN	
Width of brake pad	108 mm	Max. operating pressure (bis $\mu = 0,4$)	160 bar	
Surface of each brake pad	20.300 mm ²	Thickness of brake disk	20 mm - 70 mm	
Max. wear of each brake pad	7 mm (Material: Organic)	Assembly of brake externally 400 mm		
Nominal coefficient of friction 2)	μ = 0,4	Min. diameter of brake disk ØD _A	400 mm	
Total brake piston area - complete brake	254 cm ²	Assembly of brake internally	900 mm	
Volume with 1 mm stroke - complete brake	25,4 cm ³	Min. diameter of brake disk ØD;	900 mm	
Pressure port	1/4" BSP	Operating temperature	-30 °C to +40 °C	
Oil bleed	1/4" BSP			

²⁾ The coefficient of friction each depends on the application or material of the brake pad, respectively. Please cconsult with KTR.

$F_b = F_c \bullet 2 \bullet \mu$	
$M_b = z \bullet F_b \bullet D_{av}/2$	

 F_b = Braking force [kN] F_c = Clamping force [kN] M_b = Braking torque [kNm] Z = Number of brakes

D_{av} = Effective diameter of brake [m]

Ordering	
example:	

KTR-STOP®	YAW M	Α -	- 30
KTR brake	Size of brake	Option	Thickness of brake disk

KTR-STOP® Accessories

Hydraulic power pack

The hydraulic power pack activates the brake calipers of KTR-STOP®. For that purpose we provide for power packs with rough components for reliable operation with hardest conditions.

IntelliRamp®

IntelliRamp® is the recently developed control system performing braking processes reproducably with the variables speed versus time

Stand

The steel structure serves for mounting KTR-STOP® brake systems and is each adjusted to the application individually by KTR.

KTR Germany:

Headquarters:

KTR Kupplungstechnik GmbH

Postfach 1763

D-48407 Rheine Phone: +49(0)5971 798-0

+49(0)5971 798-698 and 798-450 Fax:

E-Mail: mail@ktr.com Internet: www.ktr.com

Schleswig-Holstein, Nord-Niedersachsen,

Hamburg, Bremen

Martin Lau

staatl. gepr. Techniker Maschinenbau KTR Kupplungstechnik GmbH Ingenieurbüro Hamburg Geschwister-Scholl-Allee 44

25524 Itzehoe

+49(0)4821 4050812 Phone: +49(0)4821 4050814

+49(0)172 5310014 Mobile: E-Mail: m.lau@ktr.com

NRW: Reg.-Bez.: Düsseldorf

Günter Enk Dipl.-Ing.

Fax:

KTR Kupplungstechnik GmbH Ingenieurbüro Bocholt Stormstraße 35

46397 Bocholt Phone:

+49(0)2871 227488 +49(0)2871 227489 Fax:

+49(0)172 5355704 Mobile: E-Mail: g.enk@ktr.com

Hessen, Rheinland-Pfalz, Saarland

Martin Dietrich

KTR Kupplungstechnik GmbH

Ingenieurbüro Frankfurt Im Mühlahl 6 61203 Reichelsheim

+49(0)6035 2077284 +49(0)6035 2077285 Fax: +49(0)172 5329968 Mobile: E-Mail: m.dietrich@ktr.com

Mitte- und Süd-Niedersachsen, Ostwestfalen, Nord-Hessen

Rainer Lüttmann

KTR Kupplungstechnik GmbH

Rodder Damm 170

48432 Rheine Phone: +49(0)5971 798-340 Fax: +49(0)5971 798-6340

Mobile: +49(0)172 5322164 E-Mail: r.luettmann@ktr.com

Bayern-Süd

Peter Benkard Dipl.-Ing. (FH)

KTR Kupplungstechnik GmbH Ingenieurbüro Adelsried

Am Mittelfeld 13

86477 Adelsried Phone: +49(0)8293 960504

+49(0)8293 960505 Fax: Mobile: +49(0)172 5313059 E-Mail: p.benkard@ktr.com

Emsland, Ruhrgebiet, Siegerland

Rainer Lüttmann staatl. geprüfter Techniker Maschinenbau

KTR Kupplungstechnik GmbH Ingenieurbüro Kamen

Südfeld 7b

59174 Kamen Phone: +4 +49(0)2307 4385020 +49(0)2307 4385021 Fax:

+49(0)162 2186045 Mobile: r.pottmann@ktr.com

Berlin, Mecklenburg-Vorpommern Südost, Sachsen-Anhalt, Brandenburg Thüringen Nord, Sachsen

Harald Scholze
Dipl.-Ing. (TU)
KTR Kupplungstechnik GmbH
Ingenieurbüro Wittenberg

August-Bebel-Straße 7 06886 Lutherstadt-Wittenberg Phone: +49(0)3491 663526 +49(0)3491 610060 Fax:

+49(0)172 5329887 Mobile: E-Mail: h.scholze@ktr.com

Baden-Württemberg Nord

Reiner Till Ingenieur

KTR Kupplungstechnik GmbH

Ingenieurbüro Bietigheim-Bissingen

Stuttgarter Str. 59

74321 Bietigheim-Bissingen Phone: T+49(0)7142 7707979 Phone:

+49(0)7142 7739221 Mobile: +49(0)172 5355056

E-Mail: r.till@ktr.com

Baden-Württemberg Süd

Jochen Glöckler staatl. gepr. Techniker Maschinenbau KTR Kupplungstechnik GmbH

Ingenieurbüro Balingen

Hölzlestraße 44

72336 Balingen Phone: +49(0)7433 91381 Phone:

Fax: +49(0)7433 91382

Mobile: +49(0)172 5310049

E-Mail: j.gloeckler@ktr.com

Bayern-Nord, Thüringen Süd

Eduard Schadly

Ingenieur KTR Kupplungstechnik GmbH Ingenieurbüro Prebitz

In der Heide 27

95473 Prebitz-Engelmannsreuth Phone: +49(0)9270 9666 +49(0)9270 9667 Fax:

Mobile: +49(0)172 5329967 E-Mail: e.schadly@ktr.com

Sales Manager Brake Systems Leitung Vertrieb Bremsen Thomas Wienkotte

Dipl.-Ing. (FH)
Peter-Schumacher-Straße 102

50171 Kerpen

+49(0)2237 971796 +49(0)2237 971795 +49(0)172 5859448 Phone: Fax: Mobile:

E-Mail: t.wienkotte@ktr.com

KTR worldwide:

Algeria KTR Alger

Algeria Buisness Center -Pins Maritimes DZ-16130 Alger Mohammadia Phone: +213 661 92 24 00 ktr-dz@ktr.com E-mail:

Australia

Deanquip PowerTrans Hydraulics & Tools Pty. Ltd., 2 / 1570-1572 Centre Road

Springvale, VIC 3171
Phone: +61 1800 338 171
Fax: +61 1800 638 171 E-mail: sales@deanquip.com Internet: www.deanquip.com

Austria

Lenze Verbindungstechnik GmbH lpf-Landesstr. 1

A-4481 Asten Phone: 43

43 7224 210 0 +43 7224 210 998 Fax: E-mail: sale@lenze-verbindung.com

Belgium/Luxemburg KTR Benelux B. V. (Bureau Belgien)

Blancefloerlaan 167/22 B-2050 Antwerpen Phone: +32 3 2110567 +32 3 2110568 E-mail: ktr-be@ktr.com

Brazil

KTR do Brasil Ltda. Rua Jandaia do Sul 471 -Bairro Emiliano Perneta

Pinhais - PR - Cep: 83321-040 Brasil

Phone: +55 41 36 69 57 13 Fax: +55 41 36 69 57 13 E-mail: ktr-br@ktr.com

 KTR Power Transmission Technology (Shanghai) Co. Ltd. Building 1005, ZOBON Business

999 Wangqiao Road Pudong

Shanghai 201201 China

Phone: +86 21 58 38 18 00 +86 21 58 38 19 00 Fax: F-mail: ktr-cn@ktr.com

Czech Republic KTR CR, spol. s. r. o. Olomoucká 226 CZ-569 43 Jevícko

+420 461 325 162 Phone: +420 461 325 162 Fax: ktr-cz@ktr.com E-mail:

Denmark

Manicus ApS Høsten Teglværksvej 98 4690 Haslev, Denmark +45 45 82 09 00 Phone: +45 45 82 09 03 Fax: E-mail: man@manicus.dk

Finland

KTR Finland OY Tiistinniityntie 4 SF-02230 Espoo PL 23

SF-02231 Phone:

Espoo +358 2 07 41 46 10 +358 2 07 41 46 19 Fax: F-mail: ktr-fi@ktr.com

France

KTR France S.A.R.L. 46 - 48 Chemin de la Bruyère

F-69570 Dardilly Phone: +33 478 64 54 66 Phone: +33 478 64 54 31 Fax: ktr-fr@ktr.com E-mail:

Great Britain

 KTR Couplings Ltd. Robert House Unit 7, Acorn Business Park Woodseats Close

Sheffield England, S8 0TB

Phone: +44 11 42 58 77 57

+44 11 42 58 77 40 Fax: E-mail: ktr-uk@ktr.com

Indonesia PT. Duta Rantai Mas Jl. Mangga Besar Raya No. 107 Block C3

RI - Jakarta 11170 P. O. Box 4597 RI - Jakarta 11045

+62 21 6 59 41 80 Phone: +62 21 6 59 45 94 E-mail: drm@bit.net.id

Iran Paralog Engineering Co., Ltd. P. O. Box 19 395-7366 No. 35, Shangarf St.

Mirdamad Blvd., Phone: +98 21 22 90 55 51 +98 21 22 90 55 50 Fax: E-mail: info@paralog.ir

India
KTR Couplings (India) Pvt. Ltd.,
T-36 / 37 / 38, MIDC Bhosari

Pune 411026 India

Phone: +91 20 27 12 73 22 +91 20 27 12 73 23 Fax: ktr-in@ktr.com E-mail:

Israel

G - G Yarom Getter Ltd. Rolling & Conveying Ltd. 6. Hamaktesh Street Industrial Zone IL - Holon 58810

+972 3 5 57 01 11 +972 3 5 59 32 46 Phone: Fax: F-mail: gginfo@gg.co.il

Italy

KTR Kupplungstechnik GmbH Sede senza rappresentanza stabile sul

Territorio Nazionale

Via Fermi, 25 I-40033 Casalecchio di Reno (BO) Phone: +39 051 613 32 32 Fax: +39 02 700 37 570 ktr-it@ktr.com E-mail:

Mondial S.p.A. Via G. Keplero, 18 I - 20124 Milano

+39 02 66 81 01 Phone: +39 02 66 81 02 64 Fax: E-mail: mkt@mondial.it Internet: www.mondial.it

Japan

 KTR Japan Co., Ltd.
 3-1-23 Daikaidori Hvoqo-ku, Kobe-shi

652-0803 Japan Phone: +81 7 85 74 03 13 Fax: +81 7 85 74 03 10 ktr-jp@ktr.com E-mail:

 KTR Japan – Tokyo Office 1-11-6, Higashi-Ueno, Taito-Ku, Tokyo 110-0015 Japan (Takeno-building, 5F)

Japan Phone: +81 3 58 18 32 07 +81 3 58 18 32 08 Fax:

Korea

KTR Korea Ltd.

101, 978-10, Topyung-Dong Guri-City, Gyeonggi-Do 471-060 Korea Phone: +82 3 15 69 45 10

+82 3 15 69 45 25 Fax: E-mail: ktr-kr@ktr.com

Malaysia Wellcotech Sdn Bhd NO: 6, Jalan Tabla 33/21 Shah Alam Technology Park Seksyen 33, 40400 Shah Alam Selangor Darul Ehsan, Malaysia Phone: +60 351218722 +60 351218692 E-mail: wctsb@wellcotech.my Internet www.wellcotech.my

Netherlands KTR Benelux B. V. Postbus 87 NL-7550 AB Hengelo (O) Adam Smithstraat 37 NL-7559 SW Hengelo (O) Tel.: +31 74 2553680 +31 74 2553689

E-Mail:

Norway

KTR Kupplungstechnik Norge AS Fjellbovegen 13

ktr-nl@ktr.com

N-2016 Frogner Phone: +47 64 83 54 90 Phone: Fax: +47 64 83 54 95 E-mail: ktr-no@ktr.com

Poland

KTR Polska SP. Z. O. O. ul. Czerwone Maki 65 PL – 30-392 Kraków

Phone: +48 12 267 28 83 Fax: +48 12 267 07 66 E-mail: ktr-pl@ktr.com

Portugal

KTR Kupplungstechnik GmbH c) Estartetxe, n° 5 – Oficina 218 E-48940 Leioa (Vizcaya) Phone: +34 9 44 80 39 09

Fax: +34 9 44 31 68 07 E-mail: ktr-es@ktr.com

Gustavo Cudell, LDA Rua Eng. Ferreira Dias, 954 P – 4149-008 Porto +351 22 615 80 00 +351 22 615 80 11

Phone: +351 22 615 80 00 +351 22 615 80 11 Fax: E-mail: info-e+s@cudell.pt Internet: www.cudell.pt

Russia

 KTR Privodnaya technika, LLC 6 Verhnii Pereulok 12 Litera A Office 229

194292 St. Petersburg Russia

Phone: +7 812 383 51 20 Fax: +7 812 383 51 25 F-mail: ktr-ru@ktr.com Internet: www.ktr.ru

Saudi Arabia

Petroengineering est. P. O. Box: 3937 Al Khobar 31952 Kingdom of Saudi Arabia Phone: +966 38 67 74 00 +966 38 67 73 00 Fax: E-mail: sales@petroengineering.net lnternet: www.petroengineering.net

Singapore

Drives & Control (S.E.A.) Pte. Ltd. 47L Tuas South Avenue 1 Singapore 637249 Phone: + 65 67 77 57 77

+ 65 67 78 43 26 E-mail: sales@drivescontrol.com.sg Slovenia

Ptujska Cesta 13

2204 Miklavž na Dravskem polju Phone: +38 6 26 29 69 20 Phone: +38 6 26 29 21 20 Fax:

info@bell.si E-mail:

Spain

KTR Kupplungstechnik GmbH
c) Estartetxe, n° 5 – Oficina 218 E-48940 Leioa (Vizcaya)
Phone: +34 9 44 80 39 09
Fax: +34 9 44 31 68 07 E-mail: ktr-es@ktr.com

Aguirrezabal Hnos., S. A.

Iruna 3 E - 48014 Bilbao

+34 9 44 47 33 58 Phone: +34 9 44 47 63 20 Fax:

aguirrezabal@aguirrezabal.com E-mail:

Brammer Iberia S. A. Plataforma D-152, Pab. 1 Poligono Ind. Erletxe E-48960 Galdácano (Vizcaya) Phone: +34 94 457 94 00 Phone: Fax: +34 94 457 94 20

E-mail:

South Africa Hytec Coupling Technology A division of Hydraulic & Automation Warehouse P. O. Box 2272 Kempton Park, 1620 28 Spartan Road, Spartan Ext 21

es@brammer.biz

South Africa
Phone: +27 11 281 3800 +27 11 281 3812 Fax: E-mail: info@hytec.co.za

Sweden

KTR Sverige AB

Box 742 S - 191 27 Sollentuna Phone: +46 86 25 02 90 Fax:

+46 86 25 02 99 E-mail: info.se@ktr.com

Switzerland

KTR Kupplungstechnik AG Bahnstr. 60

CH - 8105 Regensdorf Phone: +41 4 33 11 15 55 Fax: +41 4 33 11 15 56 E-mail: ktr-ch@ktr.com

Taiwan

KTR Taiwan Ltd.

1 F, No.: 17, Industry 38 Road Taichung Industry Zone Taichung

Taiwan, R. O. C.

Phone: +886 4 23 59 32 78 +886 4 23 59 75 78 Fax: E-mail: ktr-tw@ktr.com

Turkey KTR Turkey

Güç Aktarma Sistemleri San. ve Tic. Ltd. Sti.

Kayışdagı Cad. No: 117/2 34758 Atasehir -İstanbul Phone: +90 216 574 37 80 Phone: +90 216 574 34 45 Fax: E-mail: ktr-tr@ktr.com

HIDROPAR KOCAELI

Hidrolik Otomasyon ve Elektronik San. ve Tic. Ltd. Şti.

Osman Yılmaz Mah, İstanbul Cd, No: 80/A 41400 Gebze / Kocaeli

Turkey

+90 262 643 84 11 +90 262 643 84 14 Phone: Fax: E-mail: info@hktm.com.tr Internet: www.hidroparkocaeli.com.tr

USA

KTR Corporation 122 Anchor Road Michigan City, Indiana 46360

USA Phone: +1 2 19 8 72 91 00 Fax: +1 2 19 8 72 91 50 E-mail: ktr-us@ktr.com

KTR Kupplungstechnik GmbH

P.O. Box 1763 D-48407 Rheine

Phone: +49(0)5971 798-0

Fax: +49(0)5971 798-698 u. 798-450

E-mail: mail@ktr.com Internet: www.ktr.com

